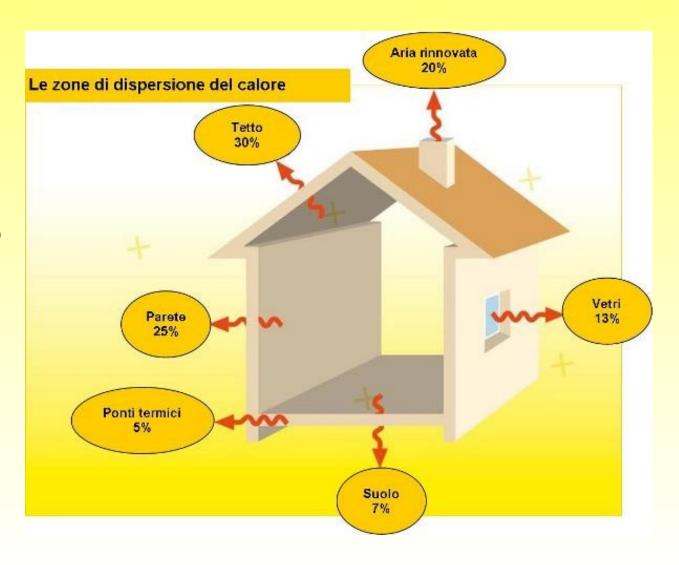


Progetto Oikos e Techne

Consumi energetici dell'edificio Possibile risparmio energetico

Importanza della verifica


- Ottenere il risparmio energetico;
- Conoscere il comportamento energetico dell'edificio, le caratteristiche che lo condizionano e determinano tale comportamento, e la normativa vigente in Italia inerente la certificazione energetica degli edifici;
- Verificare quanto la prestazione energetica potesse cambiare, apportando una miglioria all'involucro.

Metodo di calcolo

Foglio di calcolo Excel, suddiviso in 7 fogli di calcolo:

- Dati edificio;
- Dati infissi;
- Murature e coperture;
- Dispersioni;
- Apporti;
- Rendimento impianto e fabbisogno;
- Possibili risparmi energetici mediante opere di coibentazione termica.

Un flusso di calore trasmesso dall'involucro dell'edificio all'ambiente esterno.

Come è stata calcolata?

Sommando i valori di Qt e Qv è stata ottenuta la dispersione energetica totale dell'edificio scolastico.

Qt = coefficiente di dispersione termica per trasmissione

Qv = coefficiente di dispersione termica per ventilazione

La trasmittanza (U)

Si definisce come il flusso di calore che attraversa una superficie unitaria sottoposta a differenza di temperatura pari ad 1°C.

Rt = Rsi + R1 + R2 + ... + Rn + Rse

Rsi legata alle caratteristiche del materiale che Rsi legata alle caratteristiche del materiale che R1,905,tituis cesistenza superficiale interna; Rsecambiorteismico liminaciale esterna;

R = d/ λ
con Si assume pari all'inverso della
d soprometorito de le reiso de sisteriale termino penente;
λ σερφιτείγεξε termica utile ricavata da valori tabulati.

Legislazione vigente - EPi

L'EPi stabilisce qual è l'indice di prestazione energetica, che corrisponde al rapporto tra i kWh spesi da un edificio in un anno per il riscaldamento invernale e la superficie (nel caso di edifici residenziali) o il volume (edifici non residenziali).

RISULTATI

Fabbisogno di energia primaria per la climatizzazione invernale:

584'045 kWh/anno

Indice di prestazione energetica per la climatizzazione invernale proprio dell'edificio:

[EPi] =

23,17

kWh/(m3-anno)

Pertinente valore limite dell'indice di prestazione energetica limite per la climatizzazione invernale:

[EPi limite] = 7.9 kWh/(m3-anno)

Classe

Gi

Gi

19,6 kWh/m3anno

EPi,L(2010)

=

7,9 kWh/m3anno

Superficie Disperdente	Superficie utile calpestabile (mo)	Volume lordo (mc)	Altitud.	Gradi Giorno	Zona	
S/V	125	300	m	GG		
0,31	Roma		20	1415	D	B
EPi,L = 7,9 kWh/m3anno						C D E
fabbisognio energetico invernale						
			23,2	kWh/m3ann	0	Classe Gi

per scaldare la scuola in un anno servono

54'178,58 m³

di metano ogni anno